——本地化策略上不同市场是否有部署的不同——
Chatopera 王海良
本地化策略是取决于企业内部的要求,比如说数据的安全,还有成本。第二个要考虑的,就是当地的政府对 IT 的基础设施的要求。我们之前给所在的一些给客户部署时,比如发达国家或者是欧美的一个部署,就尽量考虑当地的法律法规要求。
不同地域的市场,需要支持的互联网社交或通讯平台也有所不同,我们出海企业服务主要针对在 Facebook Messenger 这个平台上。对于我们来说的话,其实单纯从 Messenger 平台来讲其实非常适合帮助企业定制化开发机器人客服。因为 Messenger 有一个重要的优势是它的 UX 从体验上对上线机器人客服特别友好,Chatbot 服务与传统的表单的软件的交互形式是不一样的。实现好 Chatbot 的主要的两点:1)用户交互体验有一套新的设计理念;2)使用人工智能技术。如果说困难或挑战,主要是我们怎么样去更好的适应Messenger这个平台,现在我们感觉到 Messenger 平台的迭代和更新是非常频繁的,需要我们保持关注。
Facebook Messenger平台
来也科技 徐旭
确实会有些差异的,就拿本地化私有部署这一方面来说吧,现在很多的金融和银行企业,他们对于数据的保密性是非常看重的,我们会提供单机版和高可用版两类选择。单机版是什么?单机版就是他们业务量不是非常大,可能一个服务器就可以解决了。然后我们也有高可用版,是基于那种大业务量的,我们提供多节点的就是多服务器的机器人,而且我们提供的是平台化的产品,可以自动化的一键部署,这个是非常高效的。
Joinchat(PandaMobo) 明月明
本地化部署上,主要有两点,第一点是功能层面,第二点是这种技术层面。
先说功能层面,我个人认为产品服务内容的一个本地化,其实服务内容取决于产品的真正的解决方案的一个完整度,具体的内容可能针对不同的一些市场,其实应该提供不同的一个解决方案,具体的解决方案可能是相对比较通用的,但是一旦内容通用了,反而对于一个不同的市场去采用的时候,可能解决的效果并不尽人意。比如说拿场景互动的模板为例,不同人群用场景提供的这种对话流的互动流程,我们一定要保证它是高效的,一旦做成通用的,相对来讲就是反倒是没用。
第二个应该就是语言,尤其是出海不同的市场对应的小语种,而目前相对于这种的成熟解决方案,很多企业是借助是第三方的翻译软件,能力的瓶颈,其实是取决于第三方,或者说真正去雇佣当地的这种服务团队。
技术层面我这边可能比较关注的就是信息安全,其实信息安全在于国内来讲,其实也是属于一个逐渐成熟的过程。出海西方发达国家,尤其是欧美,像一些顶部的客户,如果要是想要出海,无论是采用的 SaaS 产品,还是说一个私有化部署的问题,都要面临安全问题。
——智能客服能给企业带来多大的实际效益?是否能量化——
FreeD Group 王文宾
我们服务旅游类、电商类的客户比较多。他会觉得客服这一块的需求对他来讲并不是最需要的,而是说能够给他带来多少的营收,需要的是一个整体的解决方案。更希望说能够进行用户的一个二次挖掘,或者是说它当前用户的一个对于它主营产品业务的一个更高的购买率复购率等等。应该是说效益的一个提升,这样子的话其实就比较容易去来衡量量化。它的利润率营收的提升等等这些,最终考核我们这样的供应商的一些 KPI 就比较简单了。
Meetbot(飞书) 胡笑丹
一个是给它减少了多少的人工成本,这个是可以衡量的,比如说前期已经投入了多少的客服人员,然后后期我们可以给他减多少个人员。第二个就是增效方面的,也就是从 roi、roas 来说,我们给他提供的转化率能够提供多少?比如说之前我们服务过一个客户,通过我们的智能机器人给它带来的 roas 其实是跟它的广告带来的 roas 是几乎持平,甚至高出一点的。但是对客户来说可能他觉得还不够,因为如果投广告的话,他可能已经熟门熟路了,就这一系列的操作都有一套继承的章法,就比较省时间也是比较高效率,但是如果要用智能机器人的话,他要去熟悉我们的后台,要去配一些对话流,要去设置语境,甚至要让它的一些运营的小白人员来学习这一套操作,其实它在初期投入的时间成本是更大的,所以相对应的他对我们 roas 的期望是更高的。
我们后台是对客户自定义的一些触发的事件是会有设了 pixel 的追踪,可以看到通过它的一些自定义事件能够给它带来多少的新订单,转化率是怎么样的。我们未来的计划就是对这些非自定义的事件,也就是一些系统默认的,比如说消息流对话流,也把 Facebook pixel 给接进来,然后从整个客户的售前的聊天到最后完成下单,这条链路,我们是想对所有的 c 端消费者的所操作的动作都做一个追踪,这样的话也可以给企业看到具体的数字,你的客户在每一步这个动作的时候都是怎么样的一个转化率,漏斗是怎么样的,给他们一个更直观的感受。
Facebook Pixel对于效果的追踪
Sanuker 邹卓君
我们前期有一个时段在 proof of concepts。客户会拿一点点预算出来,然后我们会把一些之前我们做过的模板,然后让客户去试用,这可能是一个月的时间。这一个月内我们就会去看客户如何去对待机器人,然后去找出一些可以量化的实际的一些数据。
比如说我们会一起去定 ROI,然后每半年去看一下 ROI 究竟没有提高,有的时候也会半年三个月去调整 ROI。这样的话就可以把我们实际给企业的一些实际利益,随着它的商业或是它的产品的推出,一起去开发。
Chatopera 王海良
首先说是可量化的,其实在 Chatopera 这一侧,只是给企业客户提供了一些计算 ROI 的公式里的一些参数,比如访问机器人客服的人数,机器人回复的访客的消息数,消费者反馈等等,关键是我们提供什么样的数据去帮助企业客户去分析 ROI。
另一个需要强调的是,企业对于机器人客服的考量,应该是在机器人客服上线了一段时间,至少说是三个月。因为我们知道现在的机器人利用知识库等,都有一些依赖训练数据,或者是模板,通过新的数据去填充机器人的智能化水平的,所以开始它的数据可能不好,要有一个积累的过程,然后我们的机器人平台化去提供一些聚类分析,线上的模型训练和预测,一点点的优化机器人的对话能力,所以企业如果想期待一个比较好的回报,应该设定一个周期。
——如何让 C 端客户获得最优体验?从而成功获客——
Meetbot(飞书) 胡笑丹
一些智能客服可能老是重复的给你同一个回复,消费者不喜欢这样的体验。我们需要尽量给客户一个感觉,他不是在跟一个冷冰冰的机器在对话,机器人它是可以理解客户的这种心情,然后理解客户的需求的。飞书目前是通过一些规则的匹配来让客户给正确的梳理出对话流程。
另一个就是语境的切换,我们在谈话的时候可能大家知道一个语境,那下一次谈话过了半个小时之后,我的语境可能发生了转换,产品里面也需要考虑一个语境跳到另一个语境的时候,机器人回复的规则又发生了怎么样的变化。
一些客户他本身已经对自己的C端客户有一个基础的认知,比如说这些客户的属性,标签,然后喜好等等,所以它在设计一些营销活动的时候,就可以进行一个个性化的推送,这样的话给客户的感受就会非常好,客户就会觉得你这个机器人是理解我的。
获客角度来说,我们前期的获客主要是从企业内部一些既定的广告客户来出发,看看这些广告客户有哪一些是有智能机器人的需求的。接下来的获客目标说是希望可以朝着平台站的方向去发展。
追一科技 柯昊崑
我自己其实认为在美国的智能客服做的比较好的话,可能是 BOA,国内就是招行,他们也是投入了很多资源。其实满足 C 端需求,很大的一部分责任是由业务方自己去去提供的,是要双方去碰撞出来而得到的一个结果。
回到这个题目上面,就是如何让 c 端用户获得更最优的体验。我认为其实直白一点的说,就是你是否能够很准确的帮他解决问题,你是否准确的理解到他想要找什么样的寻求什么样的服务,从而你能够提供一个比较好的解决方案。银行客户里面,我们有一个很重要的准则,除了意图识别的准确率以外,我们还有一个叫做 solution rate,就是一个解决率。
获客方面,我们是从服务大企业起家,理解他们的一些核心的一些痛,从而建立一些标杆的案例。这些标杆的案例对于未来我们推广到腰部甚至尾部客户的时候是很占优的,因为我们已经理解到这个行业的 best practice。所以根据这个思路的话,我们未来出海的话可能也会去看一些比较大型的本地企业。
银行是应用智能客服比较标准化的一个场景
来也科技 徐旭
我认为好的服务体验应该是个性化的定制服务。所以机器人来讲,要提供极类人的个性化服务,另外一方面是话术设计要用心,甚至最好有的时候人们感觉不出原来是和一个机器人在对话。比如我们有跟比较知名的酒厂合作一个项目,当时给他提供的是一个个性化的调酒师机器人,也用了我们的推荐算法,因为不同的人,喜欢的酒的品类也不一样,定制化的推送,会让人们感觉你是懂我的,你知道我是喜欢哪款酒的,这时候再用稍微有亲和力的话术推送相关酒品的代金券就非常 match 客户需求,也会极大提高下单率。
Chatopera 王海良
我们主要关注的是 Messenger,因为我们认为出海企业的最好的获客或者服务的渠道就是 Facebook。那么主要以 Facebook Messenger 而言,提供好的智能客服机器人有很多细节,比如说,机器人得到了一个回复,是不是立即就回复给访客?是不是应该建立一个 Persona 让用户去对你的品牌有更多的认同和共鸣,比如可以设计成一些动物,可以在节假日的时候就以这些形象去影响客户,让消费者有一个共鸣,其实就是很多细节了,在此就不多赘述。总之,Facebook Messenger 对企业上线智能对话机器人提供个性化的服务,非常友好,有很多新技术都被 Facebook Messenger 支持,比如 AR、NLP、CV。

评论列表